Package: boxcoxmix 0.46
boxcoxmix: Box-Cox-Type Transformations for Linear and Logistic Models with Random Effects
Box-Cox-type transformations for linear and logistic models with random effects using non-parametric profile maximum likelihood estimation, as introduced in Almohaimeed (2018) <http://etheses.dur.ac.uk/12831/> and Almohaimeed and Einbeck (2022) <doi:10.1177/1471082X20966919>. The main functions are 'optim.boxcox()' for linear models with random effects and 'boxcoxtype()' for logistic models with random effects.
Authors:
boxcoxmix_0.46.tar.gz
boxcoxmix_0.46.zip(r-4.5)boxcoxmix_0.46.zip(r-4.4)boxcoxmix_0.46.zip(r-4.3)
boxcoxmix_0.46.tgz(r-4.4-any)boxcoxmix_0.46.tgz(r-4.3-any)
boxcoxmix_0.46.tar.gz(r-4.5-noble)boxcoxmix_0.46.tar.gz(r-4.4-noble)
boxcoxmix_0.46.tgz(r-4.4-emscripten)boxcoxmix_0.46.tgz(r-4.3-emscripten)
boxcoxmix.pdf |boxcoxmix.html✨
boxcoxmix/json (API)
NEWS
# Install 'boxcoxmix' in R: |
install.packages('boxcoxmix', repos = c('https://iagogv3.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://gitlab.com/iagogv/boxcoxmix
Last updated 5 months agofrom:a85000aad6. Checks:7 OK. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Dec 22 2024 |
R-4.5-win | OK | Dec 22 2024 |
R-4.5-linux | OK | Dec 22 2024 |
R-4.4-win | OK | Dec 22 2024 |
R-4.4-mac | OK | Dec 22 2024 |
R-4.3-win | OK | Dec 22 2024 |
R-4.3-mac | OK | Dec 22 2024 |
Exports:binomialboxcoxpowerboxcoxtypeKfind.boxcoxnp.boxcoxmixoptim.boxcoxtolfind.boxcox
Dependencies:clicolorspacedeldirfansifarverggplot2gluegtableinterpisobandjpeglabelinglatticelatticeExtralifecyclemagrittrMASSMatrixmgcvmunsellnlmenpmlregpillarpkgconfigpngqichartsR6RColorBrewerRcppRcppEigenrlangscalesstatmodtibbleutf8vctrsviridisLitewithr
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Box-Cox-Type Transformations for Linear and Logistic Models with Random Effects | boxcoxmix-package boxcoxmix |
Box-Cox-type link function for logistic mixed-effects Models | binomial boxcoxpower boxcoxtype |
Grid search over K for NPML estimation of random effect and variance component models | Kfind.boxcox |
Response Transformations for Random Effect and Variance Component Models | np.boxcoxmix |
Response Transformations for Random Effect and Variance Component Models | optim.boxcox |
Plot diagnostics for boxcoxmix functions | plot.boxcoxmix |
Summary of boxcoxmix functions | print.boxcoxmix print.boxcoxmixpure summary.boxcoxmix summary.boxcoxmixpure |
Grid search over tol for NPPML estimation of random effect and variance component models | tolfind.boxcox |